Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2019.

ADVANCED ENERGY MATERIALS

Supporting Information

for Adv. Energy Mater., DOI: 10.1002/aenm.201903338

Superior Energy-Storage Capacitors with Simultaneously Giant Energy Density and Efficiency Using Nanodomain Engineered BiFeO₃-BaTiO₃-NaNbO₃ Lead-Free Bulk Ferroelectrics

He Qi, Aiwen Xie, Ao Tian, and Ruzhong Zuo*

Supporting Information

Superior Energy-Storage Capacitors with Simultaneously Giant Energy Density and Efficiency Using Nanodomain Engineered BiFeO₃-BaTiO₃-NaNbO₃ Lead-Free Bulk Ferroelectrics

He Qi, Aiwen Xie, Ao Tian and Ruzhong Zuo*

E-mail: piezolab@hfut.edu.cn

Table S1 Refined structural parameters by using the Rietveld method for the

T (°C)	Space group	Lattice parameters	V (Å ³)	R _{wp} (%)	R _p (%)	χ^2
-50	Pm3m	a=b=c=3.9938(0) Å, $\alpha = \beta = \gamma = 90^{\circ}$	63.704(3)	5.88	4.55	1.15
25	Pm3m	a=b=c=3.9942(0) Å, $\alpha = \beta = \gamma = 90^{\circ}$	63.723(2)	5.87	4.55	1.14
100	Pm3m	a=b=c=3.9956(0) Å, $\alpha = \beta = \gamma = 90^{\circ}$	63.791(3)	5.90	4.61	1.16
175	Pm3m	a=b=c=3.9960(0) Å, $\alpha = \beta = \gamma = 90^{\circ}$	63.810(2)	5.92	4.62	1.15
250	Pm3m	a=b=c=3.9963(0) Å, $\alpha = \beta = \gamma = 90^{\circ}$	63.827(2)	5.94	4.73	1.16

x=0.1 ceramic measured at various temperatures.

 Table S2 Discharge properties of a few reported ceramics.

Composition	W_D	<i>t</i> _{0.9}	Ε	Ref.
	(J/cm^3)	(ns)	(kV/mm)	
Na _{0.7} Bi _{0.1} NbO ₃	0.56	155	10	1
$Bi_{0.5}K_{0.5}TiO_3$ -0.06La(Mg_{0.5}Ti_{0.5})O_3	0.76	200	14	2
Sm _{0.03} Ag _{0.91} NbO ₃	4.2	20000	29	3
0.65BiFeO ₃ -0.3BaTiO ₃ -0.05Bi(Zn _{2/3} Nb _{1/3})O ₃	0.09	100	7	4
0.91NaNbO ₃ -0.09Bi(Zn _{0.5} Ti _{0.5})O ₃	0.77	50	12	5
$0.9(Sr_{0.7}Bi_{0.2})TiO_3$ - $0.1Bi(Mg_{0.5}Hf_{0.5})O_3$	1	1250	16	6
$0.65Bi_{0.51}Na_{0.47}Ti_{0.9875}Nb_{0.01}O_3\text{-}0.35Ba(Ti_{0.7}Zr_{0.3})O_3$	1.23	1200	14	7
$(Na_{0.25}Bi_{0.25}Sr_{0.5})(Ti_{0.8}Sn_{0.2})O_3$	1.6	630	20	8
0.88BaTiO ₃ -0.12Bi(Ni _{2/3} Nb _{1/3})O ₃	0.54	85	10	9
$Pb_{0.94}La_{0.02}Sr_{0.04}(Zr_{0.9}Sn_{0.1})_{0.995}$	8.6	185	39.5	10
x=0.1	2.4	97	20	This
				work

Figure S1. Temperature and frequency dependence of dielectric permittivity of

(0.67-x)BF-0.33BT-xNN ceramics.

Figure S2. Surface morphology images of (0.67-x)BF-0.33BT-xNN ceramics: a) x=0, b)

Figure S3. a) Room-temperature pulsed overdamped discharging current curves of the x=0.1 ceramic at a fixed load resistance of 200 Ω under various electric fields; b) the evolution of W_D and $t_{0.9}$ with changing electric field; c) The pulsed overdamped discharging current curves of the x=0.1 ceramic under 20 kV/mm at different measuring temperatures; d) the evolution of W_D and $t_{0.9}$ with changing temperature.

Figure S4. A comparison of temperature stability of W_{rec} and η among a few typical

energy-storage bulk ceramics.^[1-3,11-16]

Figure S5. SEM micrographs on polished and thermally etched surfaces of (0.67-x)BF-0.33BT-*x*NN ceramics sintered at their optimum temperatures: a) x=0, b)

x=0.04, c) x=0.1 and d) x=0.15.

Figure S6. $(\alpha hv)^2$ versus hv plot of (0.67-x)BF-0.33BT-xNN and NN ceramics.

Figure S7. a) The complex AC impedance and fitting semicircles at 400 °C for the (0.67-x)BF-0.33BT-xNN ceramics; b) the fitted complex AC impedance including two semicircles corresponding to grain and grain boundary contributions, respectively, using the *x*=0.1 ceramic at 400 °C as an example via the equivalent circuit in the inset of a); c) plots of Z''/Z''_{max} versus frequency in the temperature range 300-600 °C for the *x*=0.1 ceramic; d) the Arrhenius-type plots of bulk conductivity for (0.67-x)BF-0.33BT-xNN

ceramics.

References

- [1] M. X. Zhou, R. L. Liang, Z. Y. Zhou, X. L. Dong, J. Mater. Chem. A 2018, 6, 17896.
- [2] F. Li, T. Jiang, J. W. Zhai, B. Shen, H. R. Zeng, J. Mater. Chem. C 2018, 6, 7976.
- [3] N. N. Luo, K. Han, F. P. Zhuo, C. Xu, G. Z. Zhang, L. J. Liu, X. Y. Chen, C. Z. Hu,

H. F. Zhou, Y. Z. Wei, J. Mater. Chem. A 2019, 7, 14118.

- [4] D. W. Wang, Z. M. Fan, W. B. Li, D. Zhou, A. Feteira, G. Wang, S. Murakami, S. K. Sun, Q. L. Zhao, X. L. Tan, I. M. Reaney, ACS Appl. Energy Mater. 2018, 1, 4403.
- [5] R. Shi, Y. P. Pu, W. Wang, X. Guo, J. W. Li, M. D. Yang, S. Y. Zhou, J. Alloy. Compd. 2020, 815, 152356.
- [6] X. Kong, L. T. Yang, Z. X. Cheng, S. J. Zhang, J. Am. Ceram. Soc. 2019, https://doi.org/10.1111/jace.16844.
- [7] Y. Huang, Q. H. Guo, H. Hao, H. X. Liu, S. J. Zhang, J. Eur. Ceram. Soc. 2019, 39, 4752.
- [8] L. T. Yang, X. Kong, Z. X. Cheng, S. J. Zhang, J. Mater. Chem. A 2019, 7, 8573.
- [9] M. X. Zhou, R. H. Liang, Z. Y. Zhou, X. L. Dong, Ceram. Int. 2019, 45, 3582.
- [10] X. H. Liu, Y. Li, X. H. Hao, J. Mater. Chem. A 2019, 7, 11858.
- [11] H. Qi, R. Z. Zuo, A. W. Xie, A. Tian, J. Fu, Y. Zhang, S. J. Zhang, Adv. Funct. Mater. 2019, 1903877.
- [12] Q. B. Yuan, F. Z. Yao, Y. F. Wang, R. Ma, H. Wang, J. Mater. Chem. C 2017, 5, 9552.
- [13] N. T. Liu, R. L. Liang, Z. Y. Zhou, X. L. Dong, J. Mater. Chem. C 2018, 6, 10211.
- [14]Q. F. Zhang, H. F. Tong, J. Chen, Y. M. Lu, T. Q. Yang, X. Yao, Y. B. He, Appl. Phys. Lett. 2016, 109, 262901.
- [15] L. Zhao, Q. Liu, J. Gao, S. J. Zhang, J. F. Li, Adv. Mater. 2017, 29, 1701824.
- [16] H. Qi, R. Z. Zuo, J. Mater. Chem. A 2019, 7, 3971.